EXPANSIVE HOMEOMORPHISMS AND TOPOLOGICAL DIMENSION

BY RICARDO MAÑÉ

ABSTRACT. Let K be a compact metric space. A homeomorphism $f: K \hookleftarrow$ is expansive if there exists $\varepsilon > 0$ such that if $x, y \in K$ satisfy $d(f^n(x), f^n(y)) < \varepsilon$ for all $n \in \mathbb{Z}$ (where $d(\cdot, \cdot)$ denotes the metric on K) then x = y. We prove that a compact metric space that admits an expansive homeomorphism is finite dimensional and that every minimal set of an expansive homeomorphism is 0-dimensional.

A homeomorphism f of a compact metric space K is expansive if there exists c > 0 (called an expansivity constant for f) such that $d(f^n(x), f^n(y)) \le c$ for all n implies x = y. This property has frequent applications in stability theory, symbolic dynamics and ergodic theory. Specially interesting are expansive homeomorphisms of 0-dimensional spaces because they can be embedded in shifts, or, in other words, they are equivalent to subshifts. In [1] Bowen proved that hyperbolic minimal sets of diffeomorphisms are 0-dimensional. Since the restriction of a diffeomorphism to a hyperbolic set is always expansive, it is natural to ask whether minimal sets of expansive homeomorphisms are 0-dimensional. The purpose of this paper is to prove this property.

THEOREM. If $f: K \hookrightarrow is$ an expansive homeomorphism of the compact metric space K then dim $K < \infty$ and every minimal set of f is 0-dimensional.

Recall that a compact metric space has dimension $\leq n$ if for all r > 0 there exists a covering $\mathfrak A$ of K by open sets with diameter $\leq r$ such that every point belongs to at most n+1 sets of $\mathfrak A$ [2]. Moreover it is known [2] that K is 0-dimensional if and only if it is totally disconnected i.e. if the connected component of every point x is $\{x\}$.

Let us see an application of the theorem to the symbolic dynamics of an expansive homeomorphism $f: K \hookrightarrow .$ Let $\mathfrak{A} = \{U_1, \ldots, U_k\}$ be a covering of K by open sets with diameter smaller than an expansivity constant c of f. Let $\Sigma(f, \mathfrak{A})$ be the subshift associated to f and \mathfrak{A} i.e. the set of sequences $\theta: \mathbb{Z} \to \mathfrak{A}$ such that $\bigcap_{-\infty}^{+\infty} f^{-n}(\bar{\theta}_n) \neq \emptyset$. Endow $\Sigma(f, \mathfrak{A})$ with the topology induced by the space $\mathfrak{A}^{\mathbb{Z}}$. Then $\Sigma(f, \mathfrak{A})$ is compact and since the diameter of the sets in \mathfrak{A} is smaller than c we have a continuous map $\pi: \Sigma(f, \mathfrak{A}) \to K$

Received by the editors November 18, 1977.

AMS (MOS) subject classifications (1970). Primary 58F15; Secondary 58F10.

defined by $\pi(\theta) = \bigcap_{-\infty}^{+\infty} f^{-n}(\bar{\theta}_n)$. Moreover if $\sigma: \Sigma(f, \mathcal{U}) \longleftrightarrow$ is the shift homeomorphism we have $f\pi = \pi\sigma$.

COROLLARY. If $\Delta \subset K$ is a minimal set for f then $\pi^{-1}(\Lambda)$ contains a minimal set Λ_0 that is mapped homeomorphically onto Λ by π .

To prove the Corollary take a covering of Λ by disjoint open sets in Λ , $\widetilde{\mathfrak{A}} = \{V_1, \ldots, V_l\}$ with diameters so small that there exists a function φ : $\widetilde{\mathfrak{A}} \to \mathfrak{A}$ with the property $\varphi(V_i) \supset V_i$ for all i. Consider the subshift $\Sigma_1 = \Sigma(f/\Lambda, \widetilde{\mathfrak{A}})$ associated to f/Λ and $\widetilde{\mathfrak{A}}$ and the maps $\widetilde{\pi} \colon \Sigma_1 \to \Lambda$ defined by $\widetilde{\pi}(\theta) = \bigcap_{-\infty}^{+\infty} f^{-n}(\overline{\theta}_n)$ and $\widetilde{\varphi} \colon \Sigma_1 \to \Sigma(f, \mathfrak{A})$ defined by $\widetilde{\varphi}(\theta) = \varphi \circ \theta$. Now $\widetilde{\pi}$ is a homeomorphism because the sets in $\widetilde{\mathfrak{A}}$ are disjoint and we have $\pi\widetilde{\varphi} = \widetilde{\pi}$, $\sigma\widetilde{\varphi} = \widetilde{\varphi}\sigma$, where σ also denotes the shift homeomorphism of Σ_1 . Since $\widetilde{\pi}$ is a homeomorphism then $\sigma \colon \Sigma_1 \hookleftarrow$ is a minimal homeomorphism (because $f\widetilde{\pi} = \widetilde{\pi}\sigma$). Hence $\widetilde{\varphi}(\Sigma_1)$ is a minimal set for $\sigma \colon \Sigma(f, \mathfrak{A}) \hookleftarrow$ and $\pi\widetilde{\varphi}(\Sigma_1) = \widetilde{\pi}\Sigma_1 = \Lambda_1$. Finally $\pi/\widetilde{\varphi}(\Sigma_1)$ is one-to-one because $\pi\widetilde{\varphi}(\theta) = \pi\widetilde{\varphi}(\theta')$ implies $\widetilde{\pi}(\theta) = \widetilde{\pi}(\theta')$ and then $\theta = \theta'$.

1. The dimension of minimal sets. Let K be a compact metric space, with metric $d(\cdot, \cdot)$ and $f: K \hookrightarrow$ an expansive homeomorphism with expansivity constant c > 0. In this section we shall assume that dim K > 0 and we shall prove that f cannot be a minimal homeomorphism.

If $\epsilon > 0$ and $x \in K$, let $W_{\epsilon}^{s}(x)$, $W_{\epsilon}^{u}(x)$ be the local stable and unstable sets defined by:

$$W_{\varepsilon}^{s}(x) = \{ y \in K | d(f^{n}(x), f^{n}(y)) < \varepsilon \forall n > 0 \},$$

$$W_{\varepsilon}^{u}(x) = \{ y \in K | d(f^{-n}(x), f^{-n}(y)) < \varepsilon, \forall n > 0 \}.$$

Fix $0 < \varepsilon < c/2$.

The idea of the proof is the following: using the expansiveness we show that for some $x \in K$ there exists a compact connected set $\Lambda_0 \subset W^s_\epsilon(x)$ with $\operatorname{diam}(\Lambda_0) = c > 0$. Then we prove that some power f^{-m} of f expands every compact connected set Λ with $\operatorname{diam}(\Lambda) = c$ contained in a local stable set. More precisely $\operatorname{diam} f^{-m}(\Lambda) > 3c$. Using this we show that $f^{-m}(\Lambda)$ contains two compact connected sets Λ' , Λ'' , contained in local stable sets, with $\operatorname{diam}(\Lambda') = \operatorname{diam}(\Lambda'') = c$ and satisfying $\inf\{d(x,y)|x \in \Lambda', y \in \Lambda''\} > c/2$. This property contradicts the minimality of f^m because if we take an open set U with $\operatorname{diam}(U) < c/2$ then either Λ'_0 or Λ''_0 (where Λ'_0 , Λ''_0 are related to Λ_0 as Λ' , Λ'' to Λ in the previous explanation) does not intersect U. Suppose $\Lambda'_0 \cap U = \emptyset$. Define $\Lambda_1 = \Lambda'_0$. Again Λ'_1 or Λ''_1 does not intersect U. Suppose $\Lambda' \cap U = \emptyset$ and define $\Lambda_2 = \Lambda'_1$. Using this method we find Λ_0 , Λ_1 , ... such that $f^{-m}(\Lambda_j) \supset \Lambda_{j+1}$ and $\Lambda_j \cap U = \emptyset$. Let $x \in \bigcap_{j>0} f^{jm}(\Lambda_j)$. Then the backwards orbit of x under f^m does not intersect U; hence K is not minimal for f^m . In order to prove that K is not minimal for f we shall follow the same

idea being more careful in the choice of U in order to make possible the construction of the sequence Λ_j satisfying $f^{-i}(\Lambda_j) \cap U = \emptyset$ for all 0 < i < m. The existence of the initial set Λ_0 is proved in Lemma III and the expanding property in Lemma IV.

LEMMA I. For all r > 0 there exists N > 0 such that

$$f^n(W^s_{\epsilon}(x)) \subset W^s_r(f^n(x)), \quad f^{-n}(W^u_{\epsilon}(x)) \subset W^u_r(f^{-n}(x))$$

for all $x \in K$, n > N.

PROOF. If the lemma is false we can find sequences $x_n, y_n \in K$, $m_n > 0$ such that $y_n \in W^s_{\epsilon}(x_n)$, $\lim m_n = +\infty$ and $d(f^{m_n}(x_n), f^{m_n}(y_n)) > r$. Since $y_n \in W^s_{\epsilon}(x_n)$ we have $d(f^n(f^{m_n}(x_n)), f^n(f^{m_n}(y_n))) \le \epsilon$ for all $-m_n \le n$. Then if $x_n \to x$, $y_n \to y$ when $n \to +\infty$ we obtain that $d(f^n(x), f^n(y)) \le \epsilon$ for all $n \in \mathbb{Z}$. Moreover $d(x, y) = \lim d(f^{m_n}(x_n), f^{m_n}(y_n)) > r$ thus contradicting the expansivity.

Now define the stable and unstable sets $W^{s}(x)$, $W^{u}(x)$ as

$$W^{s}(x) = \bigcup_{n>0} f^{-n}(W^{s}_{\epsilon}(f^{n}(x))), \qquad W^{u}(x) = \bigcup_{n>0} f^{n}(W^{u}_{\epsilon}(f^{-n}(x))).$$

By Lemma I we have:

$$W^{s}(x) = \left\{ y \in K \middle| \lim_{n \to +\infty} d(f^{n}(x), f^{n}(y)) = 0 \right\},$$

$$W^{u}(x) = \left\{ y \in K \middle| \lim_{n \to +\infty} d(f^{-n}(x), f^{-n}(y)) = 0 \right\}.$$

LEMMA II. If for some $x \in K$ and m > 0 we have $f^m(W^s(x)) \cap W^u(x) \neq \emptyset$ then K contains a periodic point.

PROOF. Suppose $f^m(W^s(x)) \cap W^s(x) \neq \emptyset$. Take $y \in W^s(x) \cap f^m(W^s(x))$. Let $z = f^{-m}(y)$. Then $f^m(z) \in W^s(x) = W^s(z)$. Therefore $\lim_{n\to\infty} d(f^n(f^m(z)), f^n(z)) = 0$. Suppose that for some subsequence m_n we have that $f^{m_n}(z)$ converges to some $w \in K$. Then

$$d(w, f^{m}(w)) = \lim d(f^{m}(f^{m_{n}}(z)), f^{m_{n}}(z))$$

= \lim d(f^{m_{n}}(f^{m}(z)), f^{m_{n}}(z)) = 0.

Define $\Sigma^s_{\delta}(x)$, $\Sigma^u_{\delta}(x)$ as the connected components of x in $W^s_{\epsilon}(x) \cap B_{\delta}(x)$ and $W^u_{\epsilon}(x) \cap B_{\delta}(x)$ respectively, where $B_{\delta}(x) = \{y/d(y, x) < \delta\}$. Let $S_{\delta}(x) = \{y/d(y, x) = \delta\}$.

LEMMA III. There exists $\varepsilon > r > 0$ such that if $0 < \delta < r$ there exists $a \in K$ such that $\Sigma^s_{\delta}(a) \cap S_{\delta}(a) \neq \emptyset$ or $\Sigma^u_{\delta}(a) \cap S_{\delta}(a) \neq \emptyset$.

PROOF. Let $\Sigma_r(x)$ be the connected component of x in $B_r(x)$. Since $\dim K > 0$ we can find $x \in K$ and r > 0 such that $\Sigma_r(x) \cap S_r(x) \neq \emptyset$. If $0 < \delta < r$ it follows that $\Sigma_\delta(x) \cap S_\delta(x) \neq \emptyset$. Suppose that for some $0 < \delta < r$ we have $\Sigma_\delta^u(y) \cap S_\delta(y) = \emptyset$ for all y. We shall prove that there exists

 $a \in K$ such that $\Sigma_{\delta}^{s}(a) \cap S_{\delta}(a) \neq \emptyset$. To find a we shall construct a family of compact connected sets Λ_{n} , n > 0, and a sequence of points $x_{n} \in \Lambda_{n}$ such that for some sequence of integers $m_{n} > 0$ they satisfy the following conditions:

- $(1) f^{-m_n}(x_n) = x_{n+1};$
- $(2) f^{-m_n}(\Lambda_n) \supset \Lambda_{n+1};$
- (3) $\Lambda_n \cap S_{\delta}(x_n) \neq \emptyset$;
- (4) $f^n(\Lambda_n) \subset B_{\varepsilon}(f^n(x_n))$ if $0 \le n \le m_{n-1}$.

Once the sets Λ_n are constructed the lemma follows easily taking $a = \lim x_n$ and defining Λ as the set of points $y \in K$ such that $y = \lim y_n$ for some sequence $y_n \in \Lambda_n$. Then Λ is connected and from (4) follows that $\Lambda \subset W^s_e(a)$. By (3) $\Lambda \cap S_\delta(a) \neq \emptyset$. Hence the connected component of a in Λ intersects $S_\delta(a)$. Therefore the same thing is true for $\Sigma^s_\delta(a)$ because $\Lambda \subset W^s_e(a)$. To construct the sets Λ_n start taking $\Lambda_0 = \Sigma_\delta(x)$. Suppose $\Lambda_0, \Lambda_1, \ldots, \Lambda_{n-1}$ is constructed. If $\tilde{\Lambda}_{n-1}$ is the connected component of x_{n-1} in $B_\delta(x_{n-1}) \cap \Lambda_{n-1}$ then

$$\tilde{\Lambda}_{n-1} \cap S_{\delta}(x_{n-1}) \neq \emptyset$$

(because Λ_{n-1} is connected) and $\tilde{\Lambda}_{n-1}$ cannot be contained in $W^u_{\epsilon}(x_{n-1})$. Hence there exists $y \in \tilde{\Lambda}_{n-1} \setminus W^u_{\epsilon}(x_{n-1})$. Then for some m > 0 we have

$$\sup \big\{ d(f^{-m}(z), f^{-m}(x_{n-1})) | z \in \tilde{\Lambda}_{n-1} \big\} \geqslant d(f^{-m}(y), f^{-m}(x_{n-1})) > \varepsilon$$

and we can suppose that:

$$\sup \left\{ d\left(f^{-j}(z), f^{-j}(x_{n-1})\right) \middle| z \in \tilde{\Lambda}_{n-1}, 0 \leqslant j \leqslant m \right\} \leqslant \varepsilon. \tag{0}$$

Let Λ_n be the connected component of $x_n = f^{-m}(x_{n-1})$ in $B_{\delta}(x_n) \cap f^{-m}(\tilde{\Lambda}_{n-1})$. Since $f^{-m}(\tilde{\Lambda}_{n-1})$ is connected we obtain that $\Lambda_n \cap S_{\delta}(x_n) \neq \emptyset$ thus proving (3). From (0) follows that Λ_n satisfies (4).

LEMMA IV. For all $0 < \delta < \varepsilon$ there exists N > 0 such that for all $x \in K$ and $y \in W_{\varepsilon}^{s}(x)$ with $d(y, x) = \delta$ there exists $0 < n \le N$ satisfying

$$d(f^{-n}(y), f^{-n}(x)) > \varepsilon.$$

PROOF. If the lemma were false there would exist sequences $x_n \in K$, $y_n \in W^s_{\varepsilon}(x_n)$ such that $d(x_n, y_n) = \delta$ and if $j \le n$, $d(f^{-j}(x_n), f^{-j}(y_n)) \le \varepsilon$. Then if $x_n \to x$, $y_n \to y$ it is easy to check that $x \neq y$ and $d(f^n(x), f^n(y)) \le \varepsilon$ for all $n \in \mathbb{Z}$.

Lemma V. There exists $\delta_0 > 0$ such that $W^s_{\epsilon}(x) \cap B_{\delta}(x) = W^s_{2\epsilon}(x) \cap B_{\delta}(x)$ for all $x \in K$, $0 < \delta < \delta_0$.

PROOF. If the lemma is false there exist sequences x_n , $y_n \in K$ such that $d(x_n, y_n) \to 0$, and $y_n \in W^s_{2\varepsilon}(x_n)$. Hence for some $m_n > 0$ we must have $d(f^{m_n}(x_n), f^{m_n}(y_n)) > \varepsilon$ and $m_n \to +\infty$. We also have $d(f^n(f^{m_n}(x_n)), f^{m_n}(y_n)) > \varepsilon$

 $f^n(f^{m_n}(y_n))) \le 2\varepsilon$ for all $-m_n \le m$, because $y_n \in W^s_{2\varepsilon}(x_n)$. Then if $f^{m_n}(x_n) \to x$ and $f^{m_n}(y_n) \to y$ when $n \to +\infty$ we conclude that $d(x, y) > \varepsilon$ and $d(f^m(x), f^m(y)) \le 2\varepsilon$ for all $m \in \mathbb{Z}$ thus contradicting the expansivity of f.

Now define the constant $\bar{\varepsilon} = \inf\{d(x,y)|d(f^{-1}(x),f^{-1}(y)) > \varepsilon\}.$

LEMMA VI. For all $0 < \delta < \min(\delta_0, \bar{\epsilon}/3)$ (where δ_0 is given by Lemma V) there exists $N = N(\delta) > 0$ such that if $x \in K$ and $\Lambda \subset W^s_{\epsilon}(x)$ is a compact connected set containing x and intersecting $S_{\delta}(x)$ then there exist 0 < m < N, points $\alpha, \beta \in f^{-m}(\Lambda)$ and compact connected sets Λ_{α} , Λ_{β} satisfying:

- (a) $\alpha \in \Lambda_{\alpha}$, $\beta \in \Lambda_{\beta}$, $\alpha \in W^{s}_{2\epsilon}(\beta)$;
- (b) $\Lambda_{\alpha} \cap S_{\delta}(\alpha) \neq \emptyset$, $\Lambda_{\beta} \cap S_{\delta}(\beta) \neq \emptyset$;
- (c) $\inf\{d(z, w)|z \in B_{\delta}(\alpha), w \in B_{\delta}(\beta)\} > \delta;$
- (d) $\Lambda_{\alpha} \subset W_{\varepsilon}^{s}(\alpha) \cap B_{\delta}(\alpha), \Lambda_{\beta} \subset W_{\varepsilon}^{s}(\beta) \cap B_{\delta}(\beta).$

PROOF. Take $N = N(\delta)$ given by Lemma IV. Since $S_{\delta}(x) \cap \Lambda \neq \emptyset$, by Lemma IV there exists $0 \le m < N$ such that

$$\sup\{d(f^{-(m+1)}(z),f^{-(m+1)}(x))|z\in\Lambda\}>\varepsilon$$

and we can suppose:

$$\sup\{d(f^{-j}(z),f^{-j}(x))|x\in\Lambda,0\leqslant j\leqslant m\}\leqslant\varepsilon.$$

Hence $f^{-m}(\Lambda) \subset W_{\varepsilon}^{s}(f^{-m}(x))$ and then:

$$f^{-m}(\Lambda) \subset W_{2r}^s(w) \tag{1}$$

for all $w \in f^{-m}(\Lambda)$. Moreover by the definition of $\bar{\epsilon}$ we have diam $f^{-m}(\Lambda) < \bar{\epsilon}$. Then we can find points α , $\beta \in f^{-m}(\Lambda)$ such that $B_{\delta}(\alpha)$, $B_{\delta}(\beta)$ satisfy (c) (here is used the property $3\delta < \bar{\epsilon}$). Let Λ_{α} , Λ_{β} be the connected components of α and β in $f^{-m}(\Lambda) \cap B_{\delta}(\alpha)$, $f^{-m}(\Lambda) \cap B_{\delta}(\beta)$ respectively. Since $f^{-m}(\Lambda)$ is connected, contains α and β , and $\alpha \notin B_{\delta}(\beta)$, $\beta \notin B_{\delta}(\alpha)$, it follows that Λ_{α} , Λ_{β} satisfy (b). By (1) α and β satisfy (a) and $\Lambda_{\alpha} \subset B_{\delta}(\alpha) \cap W_{2\epsilon}^{s}(\alpha)$, $\Lambda_{\beta} \subset B_{\delta}(\beta) \cap W_{2\epsilon}^{s}(\beta)$. Hence, by Lemma V, Λ_{α} , Λ_{β} satisfy (d).

Now we are ready to prove that f cannot be a minimal homeomorphism. Take $0 < \delta < \min(\delta_0, \bar{\epsilon}/3, r)$ (r given by Lemma III) and define:

$$r_{1} = \inf \{ d(f^{j}(x), f^{i}(y)) | x \in W^{s}_{4\epsilon}(y), d(x, y) > \delta, \\ 0 \le j \le N(\delta), 0 \le i \le N(\delta) \}$$

where $N(\delta)$ is as in Lemma VI. Using Lemma II it is easy to see that this number is positive, otherwise we should have sequences $x_n, y_n \in K$, n > 0, $y_n \in W^s_{4e}(x_n)$, $d(x_n, y_n) \ge \delta$, $0 \le j_n \le i_n \le N(\delta)$ such that $d(f^{j_n}(x_n), f^{i_n}(y_n)) \to 0$ when $n \to +\infty$. We can suppose that $x_n \to x$, $y_n \to y$ when $n \to +\infty$ and that $j_n = j$, $i_n = i$ for all $n \ge 0$. Then $y \in W^s_{4e}(x)$, $d(y, x) \ge \delta$ and $f^j(x) = f^i(y)$. Hence $j \ne i$ and $f^{j-i}(W^s(x)) \cap W^s(x) \ne \emptyset$. This, by Lemma II, implies that K contains a periodic point. So we can assume $r_1 > 0$. We shall show that $r_1 > 0$ also contradicts the minimality of K by showing the

existence of an open set U and a point p such that $f^n(p) \notin U$ for all n > 0.

First we construct a family of compact connected sets Λ_n , n > 0, a sequence of points $x_n \in \Lambda_n$ and an open set $U \subset K$ such that:

- (a) $\Lambda_n \cap S_{\delta}(x_n) \neq \emptyset$;
- (b) $\Lambda_n \subset W^s_{\epsilon}(x_n)$;
- (c) For some $0 < m_n < N(\delta), f^{-m_n}(\Lambda_n) = \Lambda_{n+1}$;
- (d) $f^{-j}(\Lambda_n) \cap U = \emptyset$ for all $0 \le j \le m_n$.

By Lemma III we can suppose that $\Sigma_{\delta}^{s}(a) \cap S_{\delta}(a)$ for some $a \in K$ (because $\delta < r$). Define $x_0 = a$, $\Lambda_0 = \Sigma_{\delta}^{s}(a)$ and take an open set U with diameter < r/2, and $U \cap \Lambda_0 = \emptyset$. Suppose that we constructed $\Lambda_0, \Lambda_1, \ldots, \Lambda_{n-1}$. To find Λ_n we apply Lemma VI obtaining two compact connected sets $\Lambda_\alpha, \Lambda_\beta$ such that defining Λ_n as one of them, properties (a), (b), (c) would be satisfied. In order to satisfy condition (d) observe that by the definition of r_1 and the fact that the diameter of U is $< r_1/2$ then if $U \cap (\bigcup_{j=0}^m f^{-j}(\Lambda_\alpha)) \neq \emptyset$ (m being the number given in Lemma VI) then $U \cap (\bigcup_{j=0}^m f^{-j}(\Lambda_\beta)) = \emptyset$ and we chose $\Lambda_n = \Lambda_\beta$. Finally define $p = \bigcap_{n>0} f^{-N_n}(\Lambda_n)$ where $N_n = \sum_{j=0}^n m_j$. Clearly $f^n(p) \notin U$ for all n > 0, thus proving that K is not minimal.

2. The dimension of K. Let f, K be as in §1. Here we shall prove that dim $K < \infty$. Let, as in §1, c > 0 be an expansivity constant for f. Fix $0 < \varepsilon < c/2$.

LEMMA. There exists $\delta > 0$ such that if $x, y \in K$, $d(x, y) < \delta$, and for some n > 0 satisfy $\varepsilon \leq \sup\{d(f^j(x), f^j(y))|0 \leq j \leq n\} \leq 2\varepsilon$, then $d(f^n(x), f^n(y)) > \delta$.

PROOF. If this property is false we can find sequences $x_n, y_n \in K$, $m_n > l_n > 0$ such that $d(x_n, y_n) \to 0$, $d(f^{m_n}(x_n), f^{m_n}(y_n)) \to 0$, $d(f^{l_n}(x_n), f^{l_n}(y_n)) \ge \varepsilon$ and $\sup\{d(f^m(x_n), f^m(y_n))|0 \le m \le m_n\} \le 2\varepsilon$. Suppose that $f^{l_n}(x_n) \to x$ and $f^{l_n}(y_n) \to y$. Then $d(x, y) \ge \varepsilon$ and $d(f^n(x), f^n(y)) \le 2\varepsilon$ for all $n \in \mathbb{Z}$.

LEMMA II. For all $\rho > 0$ there exists $N = N(\rho)$ such that $d(x, y) > \rho$ implies that $\sup\{d(f^n(x), f^n(y)) | |n| \le N\} > \varepsilon$.

PROOF. If the property is false there exist sequences $x_n, y_n \in K$ with $d(x_n, y_n) > \rho$ and such that $\sup\{d(f^j(x), f^j(y))| |j| \le n\} \le \varepsilon$. Then if $x_n \to x$, $y_n \to y$, we obtain $d(x, y) > \rho$ and $d(f^n(x), f^n(y)) \le \varepsilon$ for all $n \in \mathbb{Z}$.

To prove that dim $K < \infty$ take a covering $\{U_i | 1 \le i \le l\}$ of K by open sets with diameter $\le \delta$, δ as in Lemma I. We claim that dim $(K) \le l^2 - 1$. To prove this for each $n \ge 0$ choose $\delta_n > 0$ such that $d(x, y) \le \delta_n$ implies $d(f^j(x), f^j(y)) < \varepsilon$ for all $|j| \le n$. Let $U_{i,j}^n = f^n(U_i) \cap f^{-n}(U_j)$ and let $U_{i,j}^{n,k}$, $1 \le k \le k(i, j, n)$, be the δ_n -components of $U_{i,j}^n$, i.e. the equivalence classes of $U_{i,j}^n$ under the relation $x \sim y$ if there exists a sequence $x = x_0, x_1, \ldots, x_p = y$

such that $d(x_r, x_{r+1}) < \delta_n$ for all 0 < r < p-1 and $x_r \in U_{i,j}^n$ for all 0 < r < p. Observe that the sets $U_{i,j}^{n,k}$ are open and cover K. We have that:

$$\lim_{n \to +\infty} \left(\sup_{k,i,j} \operatorname{diam} U_{i,j}^{n,k} \right) = 0$$
 (2)

because otherwise we could find $\rho > 0$ and large values of n, say $n > 2N(\rho)$, $N(\rho)$ given by Lemma II, such that in some $U_{i,j}^{n,k}$ there exist x,y with $d(x,y) > \rho$. Let $x = x_0, x_1, \ldots, x_p = y$ a sequence in $U_{i,j}^n$ such that $d(x_r, x_{r+1}) < \delta_n$ for all $0 < r < \rho$. Define $S_r = \sup\{d(f^m(x_r), f^m(x_0)) | |m| < n\}$. By Lemma II $S_p > \varepsilon$ and by the choice of $\delta_n S_1 < \varepsilon$ and $|S_{r+1} - S_r| < \varepsilon$ for 1 < r < p. Take r such that $s_r < \varepsilon$ if r' < r and $s_r > \varepsilon$. Then $s_r < 2\varepsilon$. Therefore the points $x = x_0$ and x_r satisfy $d(f^{-n}(x), f^{-n}(x_r)) < \delta$ because $f^{-n}(x)$, $f^{-n}(x_r)$ belong to U_i , and $d(f^n(x), f^n(x_r)) < \delta$ because $f^n(x)$, $f^n(x_r)$ belong to U_j , and $\varepsilon < s_r = \sup\{d(f^m(x), f^m(x_r)) | |m| < n\} < 2\varepsilon$ thus contradicting Lemma I. Then (2) is proved and it remains to show only that for each n, every point of K belongs at most to l^2 sets of the covering $\{U_{i,j}^{n,k} | 1 < i < l$, 1 < j < l, $1 < k < k(i,j)\}$. Suppose that $\bigcap\{U_{i_m,j_m}^{n,k_m} | 1 < m < s\} \neq \emptyset$. Then $(i_m, j_m) = (i_m, j_m)$ implies that $U_{i_m,j_m}^{n,k_m} = U_{i_m,j_m}^{n,k_m}$ because they are both δ_n -components of U_{i_m,j_m}^n and have nonempty intersection.

This means that to different values of m correspond different values of the couple (i_m, j_m) . Therefore $s \le m^2$.

REFERENCES

- 1. R. Bowen, Markov partitions and minimal sets for Axiom A diffeomorphisms, Amer. J. Math. 92 (1970), 903-918.
- 2. W. Hurewicz and H. Wallman, Dimension theory, Princeton Univ. Press, Princeton, N.J., 1948.

Instituto de Matematicas Pura e Applicada, Rio de Janeiro, Brasil